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Exa-scale simulations for severe accident analysis
n JAEA promotes the development of multiphase thermal-hydraulic CFD code 

for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

n JUPITER code [Yamashita,NED2017] simulates relocation of molten materials in 
nuclear reactors as incompressible viscous fluids. 
n Finite difference in structured grids (immersed boundary)
n Volume of fluid method for multiphase flows
n Multi-components (fuel, absorber, structures)
n 3D domain decomposition (MPI+OpenMP)

n Target problems
n Peta-scale (K-computer, Tsubame3.0)

n Simulate melt-relocation behavior of several fuel assemblies
n Exa-scale

n Severe accident analysis for whole reactor pressure vessel 
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Pressure Poisson solver in JUPITER
n Melt relocation of fuel assemblies

n Solid/Liquid phases of UO2, Zry, B4C, SUS, and Air
n Problem size: 1,280x1,280x4,608~7.5G grids

n Pressure Poisson Solver

n Pressure Poisson solver occupies more than 90% of the total cost 
n 2nd order centered finite difference in structured grids (7-stencils) 
n Large density contrast ~107 of multiphase flows gives an ill-conditioned 

problem, and its condition becomes worse in larger problems
→Preconditioner is essential

n Communication Avoiding (CA) Krylov solvers on CPU platforms
[A. Mayumi, Y. Idomura, T. Ina, et al., Proc. ScalA’16@SC16 (2016)]
[Y. Idomura, T. Ina, A. Mayumi, et al., Lecture Notes Comput. Science 10776, 257 (2018)]
[Y. Idomura, T. Ina, S. Yamashita, et al., Proc. ScalA’18@SC18 (2018)]

→In this work, we develop CA-Krylov solvers on GPU platforms
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n Comparisons of P-CG and P-CBCG (s=12) [Idomura,LNCS2018]

Krylov solvers for Pressure Poisson equation
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P-CG P-CBCG P-CBCG/PCG

All_reduce/iteration 2 2/s 1/s

Computation [Flop/grid] 39.0 123.7 3.17

Memory access [Byte/grid] 248.0 312.0 1.26

Roofline time on ICEX [ns/grid] 4.33 5.61 1.30

Elapse time on ICEX    [ns/grid] 5.19 6.71 1.30
u ICEX@JAEA: Xeon E5-2680v3 (Haswell), B/F=0.12 u Roofline model [Shimokawabe,SC10]

Chebyshev Basis Communication-Avoiding CG
[Suda,RISM2016]
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Cost distribution of JUPITER on Oakforest-PACS
Strong scaling of JUPITER with P-CG, P-CACG(monomial basis), and P-CBCG

Problem size: (Nx,Ny,Nz)=(800,500,3450)

n Chebyshev basis (CBCG) enables larger CA-steps than Monomial basis (CACG)
n Good strong scaling up to 2,000 KNLs (136k cores)
n In P-CG, cost of All_Reduce increases up to 63% of total cost at 2,000 KNLs
n In P-CBCG, cost of All_Reduce is reduced to 32% of P-CG

→At 2,000 KNL, P-CBCG shows 1.4x speedup from P-CG  
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Fig. 3. Strong scaling of the P-CG, P-CACG(s = 3), and P-CBCG(s = 12) solvers
using 500, 1,000, and 2,000 processors (MPI processes) on ICEX and KNL. The cost
distribution in a single time step is shown.
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Re-design GPU preconditioner
n Block Jacobi preconditioner with Incomplete LU factorization

n Improve convergence by approximate inverse of block sub-matrices
n Intra-block cannot be parallelized because of data dependency
n Re-design data blocks for GPU threads

Data blocks on CPU = 3D domain decomposition (MPI) x ~10 cores
Data blocks on GPU = 3D domain decomposition (MPI) x ~1,000 cores
→Convergence degradation due to finer blocks
→Need to optimize data access patterns on GPU
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Figure 12.1: The block-Jacobi matrix with overlapping blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation
parameter ω. The iteration can be defined in the form

xk+1 = xk +
p
∑

i=1

ωiViA
−1
i V T

i rk.

Recall that the residual at step k + 1 is then related to that at step k by
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i AVi

)−1
V T

i

]

rk.

The solution of a sparse linear system is required at each projection step. These sys-
tems can be solved by direct methods if the subblocks are small enough. Otherwise,
iterative methods may be used. The outer loop accelerator should then be a flexible
variant, such as FGMRES, which can accommodate variations in the preconditioners.

12.3 Polynomial Preconditioners

In polynomial preconditioning the matrixM is defined by

M−1 = s(A)

where s is a polynomial, typically of low degree. Thus, the original system is re-
placed by the preconditioned system

s(A)Ax = s(A)b (12.2)

Block preconditioning

Incomplete LU factorization ILU(0)

10.3. ILU FACTORIZATION PRECONDITIONERS 307

Proposition 10.4 Algorithm 10.3 produces factors L and U such that

A = LU −R

in which −R is the matrix of the elements that are dropped during the incomplete
elimination process. When (i, j) ∈ P , an entry rij of R is equal to the value of
−aij obtained at the completion of the k loop in Algorithm 10.3. Otherwise, rij is
zero.

10.3.2 Zero Fill-in ILU (ILU(0))

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), takes
the zero pattern P to be precisely the zero pattern of A. In the following, we denote
by bi,∗ the i-th row of a given matrix B, and by NZ(B), the set of pairs (i, j), 1 ≤
i, j ≤ n such that bi,j $= 0. The ILU(0) factorization is best illustrated by the case for
which it was discovered originally, namely, for 5-point and 7-point matrices related
to finite difference discretization of elliptic PDEs. Consider one such matrix A as
illustrated in the bottom left corner of Figure 10.2.

The A matrix represented in this figure is a 5-point matrix of size n = 32 corre-
sponding to an nx × ny = 8× 4 mesh. Consider now any lower triangular matrix L
which has the same structure as the lower part of A, and any matrix U which has the
same structure as that of the upper part of A. Two such matrices are shown at the top
of Figure 10.2. If the product LU were performed, the resulting matrix would have
the pattern shown in the bottom right part of the figure. It is impossible in general
to match A with this product for any L and U . This is due to the extra diagonals in
the product, namely, the diagonals with offsets nx − 1 and −nx + 1. The entries in
these extra diagonals are called fill-in elements. However, if these fill-in elements are
ignored, then it is possible to find L and U so that their product is equal to A in the
other diagonals.

The ILU(0) factorization has just been defined in general terms: Any pair of
matrices L (unit lower triangular) and U (upper triangular) so that the elements of
A − LU are zero in the locations of NZ(A). These constraints do not define the
ILU(0) factors uniquely since there are, in general, infinitely many pairs of matrices
L and U which satisfy these requirements. However, the standard ILU(0) is defined
constructively using Algorithm 10.3 with the pattern P equal to the zero pattern of
A.

ALGORITHM 10.4 ILU(0)

1. For i = 2, . . . , n Do:
2. For k = 1, . . . , i− 1 and for (i, k) ∈ NZ(A) Do:
3. Compute aik = aik/akk

4. For j = k + 1, . . . , n and for (i, j) ∈ NZ(A), Do:
5. Compute aij := aij − aikakj .
6. EndDo
7. EndDo

308 CHAPTER 10. PRECONDITIONING TECHNIQUES
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Figure 10.2: The ILU(0) factorization for a five-point matrix.

8. EndDo

In some cases, it is possible to write the ILU(0) factorization in the form

M = (D − E)D−1(D − F ), (10.15)

where −E and −F are the strict lower and strict upper triangular parts of A, and D
is a certain diagonal matrix, different from the diagonal of A, in general. In these
cases it is sufficient to find a recursive formula for determining the elements in D.
A clear advantage is that only an extra diagonal of storage is required. This form of
the ILU(0) factorization is equivalent to the incomplete factorizations obtained from
Algorithm 10.4 when the product of the strict-lower part and the strict-upper part of
A consists only of diagonal elements and fill-in elements. This is true, for example,
for standard 5-point difference approximations to second order partial differential
operators; see Exercise 3. In these instances, both the SSOR preconditioner with
ω = 1 and the ILU(0) preconditioner can be cast in the form (10.15), but they differ
in the way the diagonal matrixD is defined. For SSOR(ω = 1),D is the diagonal of
the matrix A itself. For ILU(0), it is defined by a recursion so that the diagonal of the
product of matrices (10.15) equals the diagonal of A. By definition, together the L
and U matrices in ILU(0) have the same number of nonzero elements as the original
matrix A.
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GPU optimization of the block Jacobi preconditioner
Comparison of P-CG on 1CPU/GPU

Problem size: 256x128x512
n Broadwell (14cores)： 1D block decomposition(z) → 256x128x36~106/block
n P100 (3,584cores)： 3D block decomposition(xyz) → 8x8x8=512/block

n Finer cube blocks lead to 50% increase in number of iterations
n Slower than CPU because of strided data access

n P100 (3,584cores)： 3D block decomposition(xyz) → 8x8x1=64/block
n 2D tile blocks lead to 64% increase in number of iterations
n 3.7x speedup by coalesced data access in z-direction
→Trade off between mathematical and computational properties

7
Block shape dependency of P-CG solver (JUPITER:256x128x512=1.7M grids)
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1. WhaW is ³communication-aYoiding (CA) ´ ?
• Communication = communication between different 

nodes which take part in the same computation over the 
network (typically MPI function calls)

• Communication = very expensive compared to 
floating point operations

• Communication-avoiding = avoid communication by 
clustering together several steps of computation before 
sending data

• Krylov s-step method = calculate s-steps at once 
before sending the data Æ Communication reduced by 
a factor of s

1. Introduction

2. Implementation 

3. Performance results

• GPU version is compared to a highly
optimized CPU version of the same
algorithm [2]

• Table 1 shows the arithmetic intensity and
the roofline ratio of the CPU and GPU
version

4. References

1 Japan Atomic Energy Agency, 2 Visible Information Center 
Yussuf Ali1,2, Takuya Ina1,2, Naoyuki Onodera1, Yasuhiro Idomura1

Porting a state-of-the-art communication avoiding Krylov
subspace solver to P100 GPUs

� Krylov solvers for the pressure Poisson equation occupy ~90% of the computing cost
� MPI collective functions become critical point in computation
� We ported a Communication-Avoiding (CA) Krylov solver algorithm to the GPU
� Much faster than the CPU version 
� Tested on TSUBAME, Reedbush and JAEA ICE X CPU cluster

Figure 1: Visualized output of the solver 
showing molten parts inside a reactor

• Observation 1 = The GPU versions is much faster then the CPU version as seen in Fig. 8
• Observation 2 = As seen in Fig. 9 on the Reedbush GPU cluster the algorithm executes 

the fastest

Figure 3: SpMV kernel code in CUDA

[1] Mark Hoemmen. 2010. Communication-Avoiding Krylov Subspace Methods. Ph.D. Dissertation
[2]  Idomura Y., et al,  2018, SCFA 2018 , pp. 257 – 273,
[3] I. Yamazaki, H., et al, 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 2014, pp. 
382-391.

Kernel Arith. Intensity
CPU | GPU

Roofline ratio
CPU | GPU

SpMV+Pre. 0.13 | 0.16 0.81 | 0.89
TS Matrix 1.12 | 0.79 0.91 | 0.88

Table 1: Roofline evaluation

ICEX (CPU) Reedbush (GPU) Tsubame (GPU)
Intel compiler and CUDA version 17 17 and CUDA 9 16 and CUDA 8
MPI Intel MPI MVAPICH-GDR 2.3a OpenMPI 1.10.7
Hardware Xeon (Haswell) NVIDIA P100 NVIDIA P100
Peak performance flops [Gflops] 480 5300 5300
STREAM bandwidth [GB/sec] 58 550 550
Interconnect InfiniBand (4x FDR) InfiniBand (4x EDR 2 link) Omi-Path HFI 

100Gps x 4

1. Sparse Matrix Vector product (SpMV)
• Compressed row storage (CRS) sparse matrix 

format does not provided optimal memory access 
pattern for threads within a warp Æ no coalesced 
memory access

• The Diagonal (DIA) format is used inside the 
SpMV kernel

• DIA format maps very well to the GPU hardware 
because coalesced memory access can be 
guaranteed 

• Triple nested loop of the CPU version was 
replaced by a grid strided loop as seen in Fig. 3

2. The Preconditioned Chebyshev Basis communication-avoiding CG algorithm (P-CBCG)
• P-CBCG calculates s vectors at once (blue box in Fig. 2) in our case s = 12
• s vectors together form a matrix with n rows and s columns with n >> s, a so called Tall and 

Skinny matrix
• P-CBCG contains many Tall and Skinny matrix operations (red boxes in Fig. 2)

3. Block-Jacobi preconditioning
• On the CPU the domain is divided among OpenMP threads along the z-axis Fig. 6
• CPU approach does not map to the GPU hardware because of the memory access pattern
• Solution: divide into more smaller areas Fig. 6
• Smaller areas will result in higher performance on the GPU
• Each area is processed by one thread 
• Side-effect of smaller areas = Convergence property changes 
• GPU version needs much more iterations until convergence

Figure 2: The P-CBCG algorithm calculates s-steps in one iteration (approx. of  largest 
Eigenvalue before the main loop not shown in the figure)

Figure 5: Multiplying two Tall and Skinny matrices + reduction in order to obtain the result matrix R

Figure 4: dgemmBacthed performance inc. reduction

Figure 7: CPU and GPU 
preconditioning performance

• The area setting 1x8x8 results in 70% more iterations until convergence but has the highest 
performance compared to the CPU and to the 8x8x8 GPU area setting Fig. 7

Figure 6: Different area settings for the preconditioning

Table 2: Specifications of the JAEA ICEX,  Reedbush GPU and Tsubame GPU cluster 

Figure 8: CPU and GPU version
comparison 

2. Tall and Skinny (TS) matrix operations
• TS matrix = matrix with rows >> columns
• All BLAS gemm implementations perform very 

poorly on TS matrices as seen in Fig. 4 and [3]
• In addition our data is non-continuous in 

memory because halo regions for data exchange 
are contained 

• Solution = CUBLAS gemmBatched [3]
• gemmBatched = high performance on TS 

matrices + skipping of halo regions Fig. 5

This research was supported in part by "Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures" in Japan (Project ID: jh170031-NAH)

Figure 9: CPU versions comparison on TSUBAME and 
Reedbush

• Observation 3 = With the CA 
version of the algorithm the 
MPI_Allreduce
communication cost could be 
significantly reduced as seen 
in Fig. 10

• Conclusion: This year the 
algorithm will also be tested 
on the new Summit 
supercomputer with up to 
27,000 GPUs

Figure 10: MPI_Allreduce communication cost comparison

SUMMARY

[Ali, GTC Japan 2018]



Refactoring GPU kernels

n Refactored kernels
n SpMV
n Precon
n Tall-Skinny GEMM (computation for multiple basis vectors)
n GEMM/GEMV (reuse matrix data to reduce memory access)
cf. Size of each kernel is limited by registers and shared memory
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Roofline estimate of CUDA implementation
n Roofline estimate for P-CBCG(s=12) CUDA solver on 1 GPU 
P100: F=5300GF, B=550GB/s          Problem size: 512x128x256

n Tall-Skinny GEMM is optimized by batched GEMM in cuBLAS

9

Kernel SpMV Precon Tall-Skinny GEMM GEMM/GEMV
Flop/Byte 0.165 0.156 1.108 1.04
Blocks nx*ny*nz/512 560 Chosen by Batched 

GEMM in cuBLAS
128

Threads 512 64 288
Roofline time/grid(ns) 0.170 0.237 0.089 0.101
Elapse time/grid(ns) 0.187 0.272 0.096 0.120
Roofline ratio 0.91 0.87 0.93 0.84
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Overlap halo data communication with computation

10

n Hybrid CA approach [Mayumi,ScalA’16@SC16]

n All_Reduce → Comm. avoiding
n Halo comm. → Comm. overlap
→Resolve remaining comm. bottleneck 
in preconditioned CA-Krylov methods 

n Divide computing kernels into core and 
surface parts, and overlap the former
n Maximize coalesced memory access
n Overlap multiple CUDA streams

n P-CG provides more overlap
n P-CG:       AXPY→Halo→SpMV
→ 25~30% cost reduction
n P-CBCG: SpMV→Halo→SpMV
→ 10~15% cost reduction

Only surface parts need halo data
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Strong scaling of P-CBCG on Oakforest-PACS, ABCI and Summit 

Strong scaling at 512, 1,024, 2,048 KNLs/V100s
Problem size: 1,280 x 1,280 x 4,608
KNL (Oakforest-PACS):      3.0TF, 480GB/s, Omni-path(12.5GB/s) (1CPU per node)
V100 (Summit):                  7.8TF, 900GB/s, IB-EDR4x(25GB/s) (6 GPUs per node)
V100 (ABCI):          7.8TF, 900GB/s, IB-EDR4x(25GB/s) (4 GPUs per node)

n Block Jacobi preconditioner for GPU requires 1.4x iterations
n ABCI is faster than Summit because of higher interconnect B/W per GPU
n At 2,048GPUs/CPUs, ABCI is 1.8x faster than Oakforest-PACS

11

1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
1E+1

0 5000 10000 15000 20000

Re
sid

ua
l e

rr
or

Iterations

CPU GPU



0

2

4

6

8

10

KNL
no Ovl.

Summit
no Ovl.

Summit
Ovl.

ABCI
no Ovl.

ABCI
Ovl.

m
se

c/
ite

ra
tio

n

Precon AXPY
SpMV AXPY+Halo+SpMV
Halo Reduce

0

2

4

6

8

10

KNL
no Ovl.

Summit
no Ovl.

Summit
Ovl.

ABCI
no Ovl.

ABCI
Ovl.

m
se

c/
ite

ra
tio

n

Precon Matrix
SpMV Halo+SpMV
Halo Reduce

Impact of communication avoiding implementation on GPU

Detailed cost distribution at 1,024 KNLs/V100s

n Computing kernels of P-CG/P-CBCG show 1.5x/2.0x speedups on V100
n All_Reduce on V100 is >10x faster than KNL (flat mode, 64cores x 2SMT)

→Smaller impact of CA-Krylov methods on V100
n Halo is 2x/3x slower on ABCI/Summit following interconnect B/W per socket

→Halo data communication is remaining bottleneck on V100
n Communication overlap has significant impact on V100

→P-CG and P-CBCG are accelerated by 25~30% and 12~15%, respectively
12

P-CG P-CBCG

1.31x 1.25x
1.15x

1.12x



Strong scaling of P-CG and P-CBCG on  Summit 

Strong scaling at 480 - 7,680 V100s
Problem size: 1,280 x 1,280 x 4,608 (Iterations are fixed to 480 SpMV)

n P-CG outperforms P-CBCG up to 3,840 GPUs
→P-CG has less computation and larger impact from comm. overlap

n At 7,680 GPUs, both solvers become comparable because of All_Reduce
→Cost of All_Reduce is reduced from ~20% in P-CG to ~1.3% in P-CBCG
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Summary
P-CG and P-CBCG solvers in JUPITER code were ported on ABCI and Summit
n GPU porting

n Block Jacobi preconditioner was re-designed for >103 GPU cores
n Fully utilized GPU performance, but 1.4x more iterations

n Refactored GPU kernels achieved 90% of roofline performance
n Batched GEMM was essential for Tall-Skinny matrix operations

n Overlap halo data communication and computation

n GPU performance on V100
n GPU solvers achieved 2x speedup compared with CPU solvers on KNL
n Bottleneck of halo data comm. was resolved by comm. overlap
n P-CG/P-CBCG showed good strong scaling up to 7,680 GPUs on Summit

n P-CG: larger impact from comm. overlap for halo data comm.
n P-CBCG: less All_Reduce
→P-CBCG is promising for strong scaling beyond 104 GPUs
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